\qquad

Section

\qquad

1. Nine Poker chips (4 red chips, 3 blue chips and 2 green chips) are placed in a hat and are then randomly selected from the hat. Find the following Probabilities:
a) If a single chip is drawn from the hat, what is the probability the chip is red?

$$
P[\text { red }]=\frac{n(\text { red })}{n(S)}=\frac{4}{9}=0.4444
$$

b) If a single chip is drawn from the hat, what is the probability the chip is not red?

$$
P[\text { not red }]=1-P[\text { red }]=1-\frac{4}{9}=0.5556
$$

c) If two chips are drawn from the hat, what is the probability that both chips are red?

$$
P[\text { both red }]=P\left[1^{\text {st }} \text { is red and } 2^{\text {nd }} \text { is red }\right]=\frac{4}{9} \cdot \frac{3}{8}=0.1667
$$

d) If two chips are drawn from the hat, what is the probability the second chip is red?
P [second is red $]=P\left[1^{\text {st }}\right.$ is red and $2^{\text {nd }}$ is red or $1^{\text {st }}$ is not red and $2^{\text {nd }}$ is red]

$$
=\frac{4}{9} \cdot \frac{3}{8}+\frac{5}{9} \cdot \frac{4}{8}=0.4444
$$

2. In one region, $\mathbf{3 0 \%}$ of all residential telephone numbers are unlisted.

If four residential housing units are randomly selected, find the probability that all of them have unlisted numbers.

$$
P[\text { all unlisted }]=P\left[1^{\text {st }} \text { unlisted and } 2^{\text {nd }} \text { unlisted and } 3^{\text {rd }} \text { unlisted and } 4^{\text {th }} \text { unlisted }\right]
$$

$$
\begin{aligned}
& =(0.30)(0.30)(0.30)(0.30) \\
& =(0.30)^{4} \\
& =0.0081
\end{aligned}
$$

3. A legislative advisory committee consists of 20 Democrats (8 of whom are women) and 10 Republicans (3 of whom are women).
(a) Two of the committee members are randomly selected for a special research project. What is the probability that they are both Democrats?

$$
\text { P[both Dem] }=\frac{20}{30} * \frac{19}{29}=0.4368
$$

(b) If the chairperson is randomly selected, find the probability of getting a Democrat or a man.

$$
P[D \text { or } M]=P[D]+P[M]-P[D \cap M]=\frac{20}{30}+\frac{19}{30}-\frac{12}{30}=\frac{27}{30}=0.900
$$

(c) At each meeting of this committee, one person is randomly chosen from the 30 members and that person must act as a secretary for the meeting. Find the probability that the first two meetings have male secretaries.

$$
\mathrm{P}[\text { both } \mathrm{M}]=\frac{19}{30} \cdot \frac{19}{30}=0.4011
$$

(d) If one of the committee members is randomly selected as treasurer, find the probability that a women is chosen, given they are Republican.

$$
P[W \mid R]=\frac{P[W \cap R]}{P[R]}=\frac{3 / 30}{10 / 30}=\underline{3 / 10}=0.3000
$$

(e) Are gender and political affiliation mutually exclusive? \qquad
(f) Are gender and political affiliation independent?

	Dem.	Rep.	Totals
Men	12	7	19
Women	8	3	11
Totals	20	10	30

4. A three-person committee is to be selected at random from a group of five women and four men. Find the probability of selecting an all-woman committee.

$$
\begin{aligned}
P \text { [all women] } & =P\left[1^{\text {st }} \text { woman and } 2^{\text {nd }} \text { woman and } 3^{\text {rd }} \text { woman }\right] \\
& =\frac{5}{9} \cdot \frac{4}{8} \cdot \frac{3}{7}=.1190
\end{aligned}
$$

or

$$
P[\text { all women }]=\frac{n(W)}{n(S)}=\frac{{ }_{5} C_{3}}{{ }_{9} C_{3}}=.1190
$$

5. An unprepared student makes random guesses for the ten true-false questions on a quiz.
(a) Find the probability that there is at least one correct answer.
a. \qquad

$$
P[\text { at least one correct }]=1-P[\text { none correct }]=1-\left(\frac{1}{2}\right)^{10}=\frac{1023}{1024}=0.9990
$$

(b) Find the probability that the answers are all correct?
b. \qquad

$$
P[\text { all correct }]==\left(\frac{1}{2}\right)^{10}=\frac{1}{1024}=0.000977
$$

(b) Find the probability that the answers are either all correct or all wrong.
c.

$$
P[\text { all correct or all wrong }]=\left(\frac{1}{2}\right)^{10}+\left(\frac{1}{2}\right)^{10}=\frac{2}{1024}=0.00195
$$

6. A Poker hand consists of 5 cards from a standard deck of 52 cards.
(a) How many different Poker hands are possible?

$$
{ }_{52} C_{5}=2,598,960
$$

(b) Find the probability of being dealt a Flush
(Note: a Flush consists of all five cards in the same suit).

$$
P[\text { Flush }]=\frac{n(\text { Flush })}{n(S)}=\frac{{ }_{4} C_{1} \cdot{ }_{13} C_{5}}{{ }_{52} C_{5}}=.00198
$$

7. Complete the following:

$\mathbf{P}[\mathbf{A}]$	\underline{P} [${ }^{\prime}$]	Odds In Favor	Odds Against
3/4	1/4	3:1	1:3
2/5	3/5	2:3	3:2
2/3	1/3	2:1	1:2
0.6	0.4	3:2	2:3

